

الباب الأول

العناصر الانتقالية الصف الثالث الثانوى 2024 / 2023

لجنة الإعداد

أ/سامح وليم صادق يوسف أ/ إيمان بالله ابراهيم محمد أ/ مينا عطية عبد الملك

الإنثراف الفنى مستشار العلوم

المراجع أ/ عبد الله عبد الواحد عباس

د/ عزيزة رجب خليفة

رئيس الإدارة المركزية لتطوير المناهج د/ أكرم حسن

تمهيد

- العدد الذرى: هو عدد البروتونات الموجبة داخل نواة ذرة العنصر. ويساوى عدد الإلكترونات السالبة التي تدور حول النواة عندما تكون الذرة متعادلة كهربيًا.
- مبدأ البناء التصاعدى: تملأ المستويات الفرعية ذات الطاقة الأقل أولًا ثم ذات الطاقة الأعلى. ترتب المستويات الفرعية تصاعديًا حسب الطاقة كما يلي:

1s 2s → 2p **3s** → **3p 4s** → **3d** 4p **5s** → 4d 5p $6s \rightarrow 4f \rightarrow$ 5d 6p $7s \rightarrow 5f \rightarrow 6d$ **7**p

لاحظ أن: الرقم الموجود على يسار المستوى الفرعى يمثل عدد الكم الرئيسى (n) أى رقم مستوى الطاقة الرئيسي الذي ينتمي إليه هذا المستوى الفرعي.

- قاعدة هوند: لا يحدث ازدواج لإلكترونين في أوربيتال مستوى فرعى معين إلا بعد أن تشغل أوربيتالاته فرادى أولًا.
- الأوربيتالات: كل مستوى فرعى عبارة عن عدد فردى من الأوربيتالات وكل أوربيتال يتسع لعدد 2 إلكترون فقط. والجدول التالى يوضح عدد الأوربيتالات لكل مستوى فرعى وعدد الإلكترونات التي يمكن أن تشغله والحالات الأكثر استقرارًا للذرة:

الأكثر استقرارًا للذرة		325	326	المستوى القرعى	
تام الامتلاء	فارغ نصف ممتلئ تام الامتلاء		الإلكترونات	الأوربيتالات	الفرعى
11	1		2	1	S
11 11 11	\uparrow \uparrow \uparrow		6	3	р
11 11 11 11 11	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10	5	d
11 11 11 11 11 11 11	1 1 1 1 1 1		14	7	f

التوزيع الإلكتروني: يمكن إجراء التوزيع الإلكتروني بطرق مختلفة

لاحظ أن: عند كتابة التوزيع الإلكتروني لأقرب غاز خامل يتم اختيار أقرب غاز خامل ثم الذي يليه في الدورة كما يلي: المستوى الفرعي

₂ He	10 Ne	₁₈ Ar	36 K r	54 Xe	86Rn	الغاز الخامل
2s	3s	4s	5s	6s	7s	المستوى ٥ الذى يليه

(26Fe): الجدول التالي يوضح طرق التوزيع الإلكتروني المختلفة لذرة عنصر الحديد

2-8-14-2	تبعًا للمستويات الرئيسية
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶	تبعًا لمبدأ البناء التصاعدي
[₁₈ Ar] 4s ² 3d ⁶	تبعًا لأقرب غاز خامل
11 1 1 1 1	تبعًا لقاعدة هوند

- الجدول الدوري الحديث:

الغازات الخاملة

رتبت فيه العناصر تصاعديًا حسب أعدادها الذرية ووفقًا لمبدأ البناء التصاعدي. وبذلك يمكن تقسيم العناصر إلى أربعة مناطق (فئات) في الجدول الدوري حسب اسم المستوى الفرعي الذي ينتهي به التوزيع الإلكتروني لذرة العنصر.

الفئة (s)		
1S		
2S		No. 25.00
3S		الفئة (d)
45	7.11	3d
5S	الفئة (f)	4d
6S	(4f)	5d
7 S	(5f)	6d

		_
الفنة (p)	₂ He	هيليوم
2P	₁₀ Ne	نيون
3P	₁₈ Ar	أرجون
4P	36Kr	كريبتون
5P		
6P	₅₄ Xe	زينون
7P	86Rn	رادون

توضع أسفل الجدول في جدول خاص حتى لا يتغير شكل الجدول أو يخالف الأساس الذي بني عليه

وبالتالى يمكن وصف الجدول كما يلى:

تترتب العناصر تصاعديًا حسب العدد الذري (عدد البروتونات) كل عنصر يزيد عن الذي يسبقه في نفس الدورة ببروتون واحد والكترون واحد ويتتابع ملء المستويات الفرعية التي في نفس الدورة حتى تنتهى بالغاز الخامل لنبدأ بعدها دورة جديدة أي ملء مستوى طاقة جديد.

وقد سبق دراسة عناصر الفئتين p, s (العناصر الممثلة) في الصف الثاني وسوف نكتفي في دراستنا هذا العام بالعناصر الانتقالية التي تحتل المنطقة الوسطى من الجدول.

الصف الثالث الثاثوي

العناصر الانتقالية

الدرس الأول: العناصر الانتقالية والأهمية الاقتصادية

الدرس الثاني: التركيب الإلكتروني وحالات التأكسد لعناصر السلسلة الانتقالية الأولى

الدرس الثالث: - الخواص العامة لعناصر السلسلة الانتقالية الأولى

الدرس الرابع: استخلاص الحديد

الدرس الخامس: السبائك

الدرس السادس: خواص الحديد وتفاعلاته

الدرس السابع: أكاسيد الحديد

أسئلة امتحانات الأعوام السابقة

الصف الثالث الثانث الثانوى

العناصر الانتقالية الداخلية

الانتاندان H Ce Ce Pa 25 Ng 80 Pm Pm Sm Pu Eu 95 Am Cm Se 界の一方の Cf Si ES SE 100 T 80 Ma Im

No 102

103

العناصر الانتقالية الرئيسية:

1- التركيب الإلكتروني لمجموعات

تقسم العناصر في الجدول الدوري إلى أربعة أنواع هي: (خاملة – ممثلة – انتقالية رئيسية – انتقالية داخلية)

العناصر الانتقالية: هي عناصر الفئتين d, f وتقع في منتصف الجدول الدوري وتحتوى على أكثر من 60 عنصر. أي أنها تمثل أكثر من نصف عناصر الجدول. وتنقسم الي:

- عناصر انتقالية رئيسية: وهي عناصر الفئة d
- عناصر انتقالیة داخلیة: وهی عناصر الفئة f

العناصر الانتقالية الرئيسية (عناصر الفئة d)

تقع بين المجموعتين AA, 2A تبدأ بالمجموعة 3B وتنتهى بالمجموعة 2B التي لا تعتبر عناصر انتقالية.

تشغل العناصر الانتقالية الرئيسية عشرة أعمدة رأسية (فسر)؟؟

لأنه يتتابع فيها امتلاء المستوى الفرعى و الذى يتشبع بعشرة إلكترونات

أرقام	IIIB	IVB	VB	VIB	VIIB		VIII		1B	IIB
المجموعات	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)

ويمكن أيضًا تقسيم العناصر الانتقالية الرئيسية إلى أربعة سلاسل أفقية هي:

السلسلة الانتقالية الرابعة	السلسلة الانتقالية الثالثة	السلسلة الانتقالية الثانية	السلسلة الانتقالية الأولى	وجه المقارنة
يتتابع فيها امتلاء المستوى الفرعي 6d	يتتابع فيها امتلاء المستوى الفرعي 5d	يتتابع فيها امتلاء المستوى الفرعي 4d	يتتابع فيها امتلاء المستوى الفرعي 3d	التعريف
$7s^2$, $6d^{1-10}$	$6s^2, 5d^{1-10}$	$5s^2, 4d^{1-10}$	$4s^2, 3d^{1-10}$	التركيب الإلكترون <i>ي</i>
السابعة	السادسة	الخامسة	الرابعة	الدورة
اللأكتينيوم (₈₉ Ac) 7s² , 6d¹	اللانثانيوم (₅₇ La) 6s² , 5d¹	اليتريوم (₃₉ Y) 5s² , 4d¹	السكانديوم (₂₁ Sc) 4s ² , 3d ¹	العنصر الأول
	الزئبق (₈₀ Hg) 6s ² , 5d ¹⁰	الكادميوم (₄₈ Cd) 5s ² , 4d ¹⁰	الخارصين (₃₀ Zn) 4s ² , 3d ¹⁰	العنصر الأخير

تختلف المجموعة الثامنة عن باقى مجموعات الجدول (فسر)؟

- 1 التشابه بين عناصرها الأفقية أكثر من التشابه بين عناصرها الرأسية
 - 2 تتكون المجموعة الثامنة من ثلاثة أعمدة هي 8, 9, 10,
 - 3 غير مميزة بالحرف B

تدریب

- 1- اكتب التركيب الالكتروني للعمود قبل الأخير في عناصر الفئة d
- 2- بالرغم من وجود عشر أعمدة في عناصر الفئة d إلا أن بها ثماني مجموعات فقط (فسر)
 - 3- حدد نوع العناصر التي لها التوزيع الإلكتروني التالي:

[Ar]: 4s², 3d²

 $1s^2,2s^2,2p^6,3s^2,3p^6,4s^2,3d^8$

لاحظ أن:

- ns¹⁻², (n-1) d¹⁻¹⁰ التركيب الإلكتروني العام للعناصر الانتقالية الرئيسية
 - 2- رقم الدورة يُحدد من عدد الكم الرئيسى = آخر n = S
 - 3- عدد الكم الذي يسبق المستوى الفرعي n-1 = d
 - 4- رتبة السلسلة تُحدد من العلاقة n-3

تدريب ذاتى: اختر الإجابة الصحيحة

- 1- أكثر نصف عناصر الجدول الدوري تقع......
- أ- منتصف الجدول الدورى ب- أسفل الجدول الدورى
- ج- يمين الجدول الدوري د- منتصف وأسفل الجدول الدوري
 - 2- العناصر الانتقالية الرئيسية تقع بين
 - أ- المجموعة AA, 2A
 - ب- المجموعة 3B, 2B
 - ج- المجموعة 3B, 2A
 - د المجموعة 3A, 2B

2- الأهمية الاقتصادية لعناصر السلسة الانتقالية الأولى:

الجدول التالى يوضح عناصر السلسلة الانتقالية الأولى والنسب الوزنية لوجودها في القشرة الأرضية:

العنصر										
الرمز	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
الوزن %	0.0026	0.66	0.02	0.014	0.11	5.1	0.003	0.0089	0.0068	0.0078

عناصر السلسلة الانتقالية الأولى مجتمعة تمثل 7% من وزن القشرة الأرضية ولكنها تتميز بأهميتها الاقتصادية الكبيرة جدا وفيما يلى خصائص واستخدامات عناصر السلسلة الانتقالية الأولى:

1 - السكانديوم 21**S**C

خواصه: يوجد بكميات صغيرة جدا وموزعة على نطاق واسع في القشرة الارضية

استخداماته

1 - يضاف إلى مصابيح أبخرة الزئبق التي تستخدم فى التصوير التليفزيونى ليلا (علل)؟ لإنتاج ضوء عالى الكفاءة يشبه ضوء الشمس 2 - يضاف للألومنيوم بنسب ضئيلة لتكوين سبانك تستخدم فى صناعة طائرات الميج المقاتلة (علل) ؟ لأنها تتميز بخفتها وشدة صلابتها.

2 — التيتانيوم Ti

خواصه: عنصر شدید الصلابه كالصلب ولكنه أقل منه كثافه استخداماته:

1- يكون مع الألومنيوم سبائك تستخدم في صناعة الطائرات والمركبات الفضائية (علل).

لأنه يحافظ على متانته في درجات الحرارة المرتفعة في الوقت الذي تنخفض فيه متانة الألومنيوم.

2- يستخدم في عملية زراعة الأسنان والمفاصل الصناعية (استخدام طبي) (علل) لأن الجسم لا يلفظه ولا يسبب أي نوع من التسمم.

مركباته:

ثانى أكسيد التيتانيوم TiO₂

يدخل في تركيب مستحضرات التجميل التي تحمى من أشعة الشمس (علل) لأن دقائقه النانوية تمنع وصول الأشعة فوق البنفسجية إلى الجلد.

3− الفناديــــوم 23**V**

خواصه واستخداماته:

تضاف نسبة ضئيلة منه إلى الصلب لتكوين سبيكة تستخدم في صناعة زنبركات السيارات (علل)

لأنها تمتاز بقساوة عالية وقدرة كبيرة على مقاومة التآكل.

مركباته:

خامس أكسيد الفاتاديوم ٧٥٥٥

استخداماته:

- 1- صبغة في صناعة السيراميك والزجاج
- 2- عامل حفاز في صناعة المغناطيسات فائقة التوصيل ا
- 3- عامل حفاز في تحضير حمض الكبريتيك في الصناعة بطريقة التلامس.
- 4- عامل حفاز تحضير حمض البنزويك من أكسدة الطولوين في الهواء الجوي

تدريب

- 1- النسبة بين صلابة تيتانيوم (أكبر من/ أصغر من / تساوى) الواحد
 - 2- ما الدليل على أن مصابيح الزئبق تعطى ضوء عالى الكفاءة
 - 3- ما الدليل على أن التيتانيوم لا يسبب أى نوع من التسمم؟
 - 4- أيا مما يأتى قد يكون صحيحًا عند ترتيب العناصر حسب وفرتها؟
 - (أ) حدید > سکاندیوم > منجنیز (ب) حدید > کوبلت > سکاندیوم

TiO₂

4- الكروم 24Cr

خواصــه

عنصر على درجة عالية من النشاط الكيميائي لكنه

يقاوم فعل العوامل الجوية علك؟

لأنه يكون طبقة غير مسامية من الأكسيد (طبقة من الصدأ

المرغوب فيه) على سطحه يكون حجم جزيئاته أكبر من حجم ذرات العنصر نفسه مما يمنع

استمرار تفاعل الكروم مع أكسجين الجو (الخمول)

استخداماته:

1- طلاء المعادن 2- دباغة الجلود

مركباته:

- 1- أكسيد الكروم Cr2O3 يستخدم في صناعة الأصباغ
 - 2- ثانى كرومات البوتاسيوم K2Cr2O7 مادة مؤكسدة

5 – المنجنيز Mn ₂₅

خواصه:

لا يستخدم في حالته النقية وإنما يستخدم في صورة سبائك أو مركبات (علل) لأنه عنصر شديد الهشاشة (سريع التقصف)

استخداماته:

- 1- سبائك الحديد مع المنجنيز تستخدم فى صناعة خطوط السكك الحديدية علل
 لانها أصلب من الصلب.
- 2- سبائك الألومنيوم والمنجنيز تستخدم في صناعة عبوات المشروبات الغازية (Cans) علل لمقاومتها للتآكل.

مركباته

ثاني أكسيد المنجنيز MnO₂

1- يستخدم كعامل مؤكسد قوى في صناعة العمود الجاف

طبقة من الاكسيد حجم جزيناتها اكبر من حجم ذرات الفلز وغير مساميه ذرات الفلز المعزولة عن الهواء

2- يستخدم كعامل حفار في تفاعل انحلال فوق أكسيد الهيدروجين (ماء الأكسجين) لإنتاج الأكسجين

برمنجنات البوتاسيوم KMnO4: مادة مؤكسدة ومطهرة

كبريتات المنجنيز [MnSO4 : مبيد للفطريات

6 – الحديد Fe

خواصه: لا يستخدم في صورته النقية وانما يستخدم في صورة سبائك أو مركبات علل

لأن الحديد النقى لين نسبيا

استخداماته

- 1. يستخدم في الخرسانات المسلحة (مجال التشييد والهندسة)
 - 2. أبراج الكهرباء والسكاكين (استخدام منزلي)
 - 3. مواسير البنادق والمدافع (المجال الحربي)
 - 4. الأدوات الجراحية (المجال الطبي)
- 5. يستخدم كعامل حفاز في صناعة النشادر بطريقة هابر بوش
- 6. يستخدم كعامل حفار في تحويل الغاز المائي (CO+H₂) إلى وقود بطريقة (فيشر- تروبش)

الغاز المائي: خليط من غازى أول اكسيد الكربون والهيدروجين.

إستخدامات الغاز المائي:

انتاج وقود سائل.

تدريب

لخ عامل مختزل في فرن مدركس (في اختزال خام الحديد لإنتاج الحديد)

1	

يلى:	ما	أكمل
- ق		<u> </u>

ۇكسىد	كعامل م	يستخدم	لمنجنين	۔ مرکب ا	1
-------	---------	--------	---------	----------	---

2- أكسيد للمنجنيز يستخدم كعامل مؤكسد

3- مادة (مركب للمنجنيز) يستخدم كعامل مؤكسد

4- ثلاث مواد (عوامل) مؤكسده و

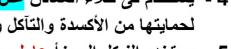
5- ثلاث عوامل حفازة و و

خواصه: يشبه الحديد في أن كلاهما قابل للتمغنط

استخداماته:

- 1- يستخدم مع الحديد في صناعة المغناطيسات علل؟ لأنه قابل للتمغنط
 - 2- يستخدما في صناعة البطاريات الجافة في السيارات الحديثة

مركباته:


له اثنا عشر نظيرا مشعا أهمها الكوبلت 60 حيث تمتاز أشعة جاما الصادرة عنه بقدرة عالية على النفاذ لذا يستخدم في:

- 1- حفظ المواد الغذائية
- 2- التأكد من جودة المنتجات بالكشف عن مواقع الشقوق ولحام الوصلات
 - 3- الكشف عن الاورام الخبيثة وعلاجها

8 – النيكل 28**Ni**

استخداماته:

- 1 يستخدم في صناعة بطارية نيكل كادميوم القابلة لإعادة الشحن
- 2 سبائك النيكل مع الصلب تتميز بالصلابة ومقاومتها للصدأ ومقاومة الأحماض
 - 3 سبائك النيكل كروم تستخدم فى ملفات التسخين والأفران الكهربية علل؟ لأنها تقاوم التآكل وهي مسخنة لدرجة الاحمرار
 - 4 يستخدم في طلاء المعادن علل؟ لحمايتها من الأكسدة والتآكل ويعطيها شكلا أفضل
 - 5 يستخدم النيكل المجزأ عامل حفاز في هدرجة الزيوت النباتية

9 – النحاس 29Cu

خواصه:

يعتبر أول فلز عرفه الإنسان تعرف سبيكة النحاس مع القصدير بالبرونز وتعرف سبيكة النحاس مع الخارصين بالنحاس الاصفر

الصف الثالث الثاثوي 12

استخداماته:

1- يستخدم النحاس فى صناعة الكابلات الكهربائية علل لأنه موصل جيد للكهرباء.

2- يستخدم في صناعة سبائك العملات المعدنية علن؟ لأنه محدود النشاط.

مركباته:

- كبريتات النحاس CuSO₄ تستخدم في:
- عملية تنقية
 الشرب لأنها مبيد للفطريات
 - یستخدم کمبید حشری
- محلول فهلنج (أحد مركبات النحاس).
 يستخدم فى الكشف عن سكر الجلوكوز علل؟
 حيث يتغير لونه من الازرق الى البرتقالى

س: كيف يمكنك الكشف عن سكر الجلوكوز؟

الاستنتاج	المشاهدة	التجربة
المركب هو سكر	يتحول لون محلول فهلنج من اللون الأزرق	إضافة قطرات من محلول
الجلوكوز	الى اللون البرتقالى	فهانج الى المركب المجهول

10 – الخارصين Zn ₃₀

استخداماته:

يستخدم فى جلفنة الفلزات علن؟ لحمايتها من الصدأ مركباته

- 1- أكسيد الخارصين ZnO: في صناعة الدهانات المطاط مستحضرات التجميل
- 2- كبريتيد الخارصين Zns: يستخدم فى صناعة الطلاءات المضيئة شاشات الأشعة السينية ما معنى جلفنة الفلز؟ غمس الفلز فى الخارصين المنصهر

99.5%MIN N.W.:25 KG

G.W.:25.1KG

المادة المستخدمة	الشكل	المادة المستخدمة	الشكل
		:22 19 1 64.	Panasonic RECHARGEABLE BATTERY O RECHARGE BOT THE TANK CO 600 man NICCO 120
	Ultracell a survivament of the second of the		
Sal soigh			Action of Continues of the Continues of
			(3)

2- التوزيع الإلكتروني وحالات التأكسد لعناصر السلسلة الانتقالية الأولى

أقصى حالة تأكسد	حالات التأكسد والشائعة منها	التركيب الإلكتروني	المجموعة	العنصر
3+	3	[Ar] $4s^2$, $3d^1$	IIIB	21 Sc
4+	2,3,4	[Ar] $4s^2$, $3d^2$	IVB	22 Ti
5+	2,3,4,5	[Ar] $4s^2$, $3d^3$	VB	$_{23}V$
6+	2, 3, 6	[Ar] $4s^1$, $3d^5$	VIB	₂₄ Cr
7+	2,3, -6, 7	[Ar] $4s^2$, $3d^5$	VIIB	₂₅ Mn
6+	2, 3, 6	[Ar] $4s^2$, $3d^6$	VIII	26Fe
4+	2, 3, 4	[Ar] 4s , 3d ⁷	VIII	₂₇ C0
4+	2, 3, 4	[Ar] $4s^2$, $3d^8$	VIII	28Ni
2+	1, 2	[Ar] 4s ¹ , 3d ¹⁰	IB	29 Cu
2+	2	[Ar] $4s^2$, $3d^{10}$	IIB	30 Zn

ملاحظات على الجدول:

- ❖ حالات التأكسد المظللة بالدائرة الحمراء هي الاكثر شيوعاً لهذه العناصر.
 - ❖ عنصر النحاس الوحيد الذي يعطى حالة تأكسد +1
 - ♦ أكبر حالة تأكسد توجد في عنصر المنجنيز = +7
 - ♦ أكبر حالة تأكسد شائعة +5 لعنصر الفناديوم

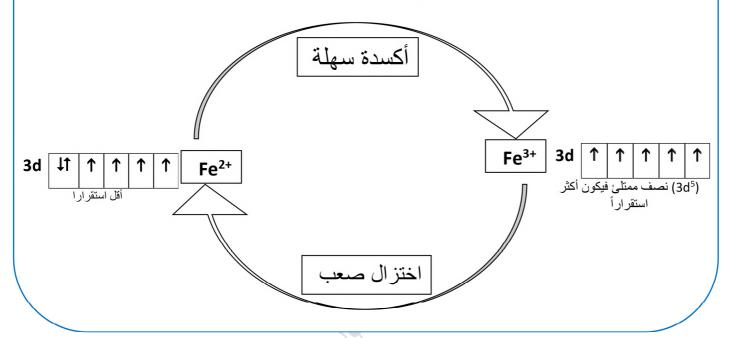
تقع عناصر السلسة الانتقالية الأولى بعد الكالسيوم ($_{20}$ Ca) في الدورة الرابعة وتركيبه الإلكتروني القع عناصر السلسة الانتقالية الأولى بعد الكالسيوم ($_{18}$ Ar] 4s² حيث يتتابع فيها امتلاء أوربيتالات المستوى الفرعي ($_{18}$ Ar] 4s² حيث يتابع فيها امتلاء أوربيتالات المستوى الفرعي الفرعي نصل إلى المنجنيز ($_{3d}$ 5) ثم يحدث ازدواج في الإلكترونات حتى نصل إلى الخارصين (الزنك) ($_{3d}$ 10) $_{60}$ 00 (($_{11}$ 20) $_{12}$ 30) $_{12}$ 30

🗇 علل: يشذ التركيب المتوقع لكل من

(أ) الكروم (24Cr) يكون: [Ar]3d⁵4s¹

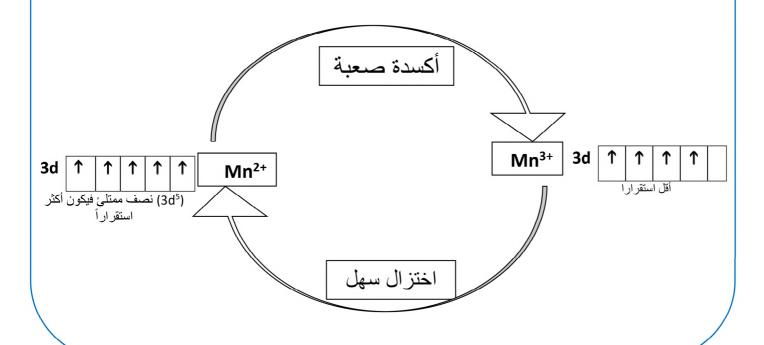
(ب) النحاس (29Cu) يكون: [Ar]3d¹⁰4s¹

التوزيع المفترض التوزيع الفعلي


(أ) الكروم (24Cr) يكون : [Ar]3d⁵,4s¹ يكون

(ب) النحاس (29Cu) يكون: [Ar]3d⁹,4s² يكون:

بسبب تقارب المستويين (4s) و (3d) في الطاقة فينتقل الكترون واحد من (4s) إلى (3d) حتى يكون (3d) نصف ممتلئ يكون (3d) نصف ممتلئ وبذلك تكون الذرة أكثر استقراراً


آ علل: يسهل أكسدة +Fe² إلى +Fe³?

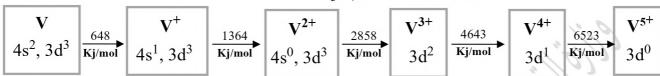
لأنه يتحول من الأقل استقرار الى الأكثر استقرار حيث يكون المستوى الفرعي d نصف مكتمل في حالة +e3+ وهذا يجعل الذرة أكثر استقرار.

🧻 علل: يصعب أكسدة +Mn² إلى +Mn³؟

لأنه يتحول من الأكثر استقرار حيث يكون المستوى الفرعي d نصف مكتمل إلى الأقل استقرار.

- ❖ عند ترك محلول الحديد || في الهواء لفترة طويلة يتحول من اللون الأخضر إلى اللون الأصفر بسبب تأكسده وتحوله إلى أكسيد حديد |||
- ❖ عند تعرض محلول المنجنيز ||| لغاز الهيدروجين يتحول إلى محلول المنجنيز || بسبب اختزاله

علل: تتميز عناصر السلسلة الانتقالية الأولي بتعدد حالات تأكسدها؟ (أو يذكر أي عنصر من السلسلة)؟ لأن الإلكترونات المفقودة عند تأكسد العنصر تخرج من المستوى الفرعي (4s) أولاً ثم المستوى الفرعي القريب منه في الطاقة (3d) بالتتابع.


- الله علا: تعطي غالبية عناصر السلسلة الانتقالية الأولي حالة التأكسد +2؟ مسبب خروج إلكترونين من المستوى الفرعي 45
- ❖ لاحظ: في الفلزات الممثلة مثل الصوديوم والماغنسيوم والألومنيوم نجد أن الزيادة في جهد التأين الثاني في حالة الصوديوم والثالث في حالة الماغنسيوم والرابع في حالة الألومنيوم كبيرة جداً لأنه يتسبب في كسر مستوى طاقة مكتمل.
 - العادي؟ علل: لا يمكن الحصول على Al+4, Mg+3, Na+2 بالتفاعل الكيميائي العادي؟ على الزيادة في جهد التأين الثاني في حالة الصوديوم والثالث في حالة الماغنسيوم والرابع في حالة الألومنيوم كبيرة جدا لأنه يتسبب في كسر مستوى طاقة مكتمل.
- ❖ تعطى جميع عناصر السلسلة الانتقالية الأولى حالة التأكسد (+2)وذلك بفقد إلكتروني المستوى الفرعى (4s) أولاً وفى حالات التأكسد الأعلى تفقد الإلكترونات من المستوى الفرعي (3d).
 - مثل: d, s تعطى أقصى حالات التأكسد عندما تفقد الذرة جميع الكترونات المستويين d, s. مثل: Mn⁷⁺, V⁵⁺, Ti⁴⁺
- ❖ تزداد حالات التأكسد حتى تصل أقصاها (+7) في حالة المنجنيز ثم تقل حتى تصل إلى (+2) في الخارصين
 - ❖ عدد التأكسد لأي عنصر لا يتعدى رقم مجموعته ويشذ عن ذلك المجموعة (IB) وتشمل عناصر العملة وهي النحاس والفضة والذهب حيث تعطى حالة تأكسد (+2 أو +3).
 - 🗂 علل: تراجع عدد حالات التأكسد بعد عنصر المنجنيز؟؟
 - مر بسبب صغر نصف قطر الذرة وبالتالى ارتفاع جهد تأينها وصعوبة فقد الالكترونات
 - الله علل: يصعب الحصول على أيون سكانديوم +Sc⁴?؟ لأن ذلك يتسبب في كسر مستوى طاقة مكتمل
 - و علل: السكانديوم الوحيد الذي يعطى حالة تأكسد +3 مباشرة؟؟
 - م لأن في هذه الحالة يكون (3d°) فارغاً تماماً من الإلكترونات وتكون الذرة أكثر ثباتاً.

الفلزات الممثلة غالباً ما يكون لها حالة تأكسد واحدة على عكس العناصر الانتقالية

🗇 علل: طاقة التأين للعنصر الانتقالي تزداد بتدرج واضح؟؟

مرح بسبب خروج الالكترونات من المستوي الفرعي 45 ثم 3d القريب منه في الطاقة بالتتابع مما يؤدي إلى زيادة الشحنة الفعالة للنواة وبالتالي زيادة قوة جذب النواة للإلكترونات فتزداد طاقة التأين

جهود تأين الفناديوم في حالات التأكسد المتتالية له

یزداد جهد التأین الأول تدریجیاً من الیسار للیمین

العنصر

الانتقالي

هو العنصر الذي تكون فيه أوربيتالات (d^{1-9}) أو (f^{1-13}) مشغولة ولكنها غير تامة الامتلاء سواء في الحالة الذرية أو في أي حالة من حالات تأكسده

والفضة والذهب) عناصر العملة (النحاس والفضة والذهب) عناصر انتقالية (IB)؟؟

		,
الذهب [79 A u]	الفضة [47 A g]	النحاس [29 Cu]
[54X] 4f ¹⁴ , 5d ¹⁰ , 6s ¹	[36Kr] 4d ¹⁰ , 5s ¹	[18Ar] 3d ¹⁰ , 4s ¹

تعتبر عناصر انتقالية لأن المستوى الفرعي (d) للعناصر الثلاثة ممتلئ بالإلكترونات في الحالة الذرية ولكن عندما تكون في حالة التأكسد (+2) أو (+3) يكون المستوى الفرعي (d) غير ممتلئ (d²) , (d²) لذرية ولكن عندما تكون في حالم انتقالية.

- الله علل: لا تعتبر عناصر الخارصين والكادميوم والزنبق عناصر انتقالية؟؟
 - مل: لا تعتبر عناصر المجموعة (IIB) عناصر انتقالية؟؟
- صر لا تعتبر عناصر انتقالية لأن المستوى الفرعي (d10) تام الامتلاء سواء في الحالة الذرية أو حتى في حالة التأكسد الوحيدة +2.

عنصر انتقالي له حالة تأكسد واحدة (السكانديوم).

عنصر غير انتقالي له حالة تأكسد واحدة (الخارصين).

عنصر يعطى حالة تأكسد أكبر من مجموعته (النحاس).

عناصر لا تعطى حالة تأكسد تدل على خروج جميع الإلكترونات (المجموعة الثامنة).

أكبر حالة تأكسد توجد في عنصر المنجنيز +7

3- الخواص العامة لعناصر السلسلة الانتقالية الأولى

الجدول التالى يوضح بعض خواص عناصر السلسلة الانتقالية الأولى (للاطلاع فقط)

*1.1211	14.500 35.0	الكثافة	نصف القطر بوحدة	الكتلة	u a ta ti
درجة الغليان	درجة الانصهار درجة الغليا		A°	الذرية	العنصر
3900	1397	3.1	1.44	45	21 S C
3130	1680	4.42	1.32	47.9	₂₂ Ti
3530	1710	6.07	1.22	51	23 V
2480	1890	7.19	1.17	52	24Cr
2087	1247	7.21	1.17	54.9	₂₅ Mn
2800	1528	7.87	1.16	55.9	26 Fe
3520	1490	8.70	1.16	58.9	₂₇ Co
2800	1492	8.90	1.15	57.7	28 Ni
2582	1083	8.92	1.17	63.5	29 C u

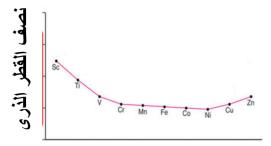
- أصغر العناصر كتلة السكانديوم وأكبرها النحاس
- أصغر العناصر حجماً النيكل وأكبرها حجماً السكانديوم
- ♦ أصغر العناصر كثافة السكانديوم = 3.1 g/cm³ وأكبرها كثافة النحاس
 - ♦ أقل العناصر في درجة الانصهار النحاس وأكبرها الكروم
 - ♦ أقل العناصر درجة غليان المنجنيز وأكبرها السكانديوم

تزداد تدريجيا بزيادة العدد الذري.

أولاً: الكتلة الذرية

🗇 علل: يشذ النيكل في التدرج في الكتلة الذرية عن باقي عناصر السلسلة الانتقالية ؟.

مر يرجع ذلك لوجود خمسة نظائر مستقرة للنيكل المتوسط الحسابي لها 58.7 u أقل من الكوبلت


√ الكتلة الذرية لأثقل نظائر النيكل أكبر من 58.7 u

ثانيا: نصف القطر

يلاحظ أن أنصاف الأقطار الذرية لعناصر السلسلة الانتقالية الرئيسية الأولى تتميز بما يلى:

- لا تتغير كثيراً عند الانتقال عبر السلسلة.
- ◄ الثبات النسبي لنصف القطر من الكروم إلى النحاس.

- أ علن: الثبات النسبي لنصف القطر من الكروم الى النحاس في عناصر السلسلة الانتقالية الاولى؟؟ علل: النقص في الحجم الذري لعناصر السلسلة الانتقالية الأولى لا يكون كبيراً؟
 - صم يرجع ذلك الى عاملين متعاكسين هما:
- ✓ <u>العامل الأول</u>: بزيادة العدد الذرى تزداد الشحنة الفعالة للنواة فيزداد قوة جذب النواة للإلكترونات مما يعمل على نقص نصف القطر.
 - √ العامل الثاني: بزيادة العدد الذرى يزداد عدد إلكترونات المستوى الفرعي (3d) فتزداد قوى التنافر بينها مما يعمل على زيادة نصف القطر.
 - الله على: استخدام عناصر السلسلة الانتقالية الأولى في صناعة السبائك الاستبدالية؟؟ مسبب الثبات النسبي في أنصاف أقطارها

✓ عند زيادة العدد الذري يقل نصف القطر ويصعب
 تأكسد العنصر بسبب زيادة الشحنة الفعالة للنواة

تدرج نصف قطر عناصر السلسلة الانتقالية الأولى

ثالثًا: الخاصية الفلزية

- والماسلة الانتقالية الأولى تعتبر فلزات نموذجية؟؟
 - صر لأنها تتميز بما يلي:
- جميعها فلزات صلبة تمتاز باللمعان والبريق وجودة التوصيل الحرارى والكهربى.
 - الها درجات انصهار وغليان مرتفعة.
 - 🧻 معظمها فلزات ذات كثافة عالية.
- متباينة في النشاط الكيميائي فالنحاس فلز محدود النشاط -- وبعضها متوسط النشاط مثل الحديد الذي يصدأ عند تعرضه للهواء الجوي -- وبعضها شديد النشاط مثل السكانديوم الذي يحل محل هيدروجين الماء بشدة.
 - و علل: عنصر السكانديوم يحل محل هيدروجين الماء بسهولة؟؟

 $2Sc_{(s)} + 6H_2O_{(l)} \rightarrow 2Sc(OH)_{3(aq)} + 3H_{2(g)}$ هم لأنه عنصر شديد النشاط الكيميائي

- √ النحاس رغم ضعف نشاطه إلا أنه يتفاعل مع بعض الأحماض التي تقوم بدور العوامل المؤكسدة القوية مثل حمض النيتريك الذي يؤكسد النحاس إلى أكسيد نحاس يتفاعل مع الحمض.
 - √ لها درجة انصهار وغليان مرتفعة ويعزى ذلك إلى الترابط القوى بين الذرات والذي يتضمن اشتراك إلكترونات 3d، 4s في هذا الترابط.

- تا علن: ارتفاع درجات غليان وانصهار عناصر السلسلة الانتقالية الأولى ؟؟ ارتفاع درجة انصهار التيتانيوم أو الفانديوم ؟؟ درجة انصهار الحديد 1538°C ؟؟
- صم بسبب الترابط القوى بين الذرات بسبب قوة الرابطة الفلزية في هذه العناصر نتيجة اشتراك الكترونات (3d, 4s) في هذا الترابط
 - الله علل: معظم عناصر السلسلة الانتقالية الأولى ذات كثافة عالية؟؟
- صم لأن الحجم الذرى لهذه العناصر ثابت تقريباً وعلى ذلك فالعامل الذي يؤثر في الزيادة التدريجية للكثافة هو زيادة الكتلة الذرية.
 - والمسلمة الأنتقالية الأولى بزيادة العدد الذري؟؟
 - حمر بسبب الزيادة في الكتلة الذرية مع الثبات النسبي في أحجامها الذرية

أقل عنصر	أعلي عنصر	الخاصية
النيكل	السكانديوم	الحجم الذري
السكانديوم	النحاس	الكثافة
المنجنيز	السكانديوم	درجة الغليان
النحاس	الكروم	درجة الانصهار

رابعا: الخواص المغناطيسية

- الخواص المغناطيسية لها فضل كبير في فهم كيمياء العناصر الانتقالية.
 - هناك العديد من أنواع الخواص المغناطيسية نستعرض منها.
 - 1 -الخاصية البارامغناطيسية: Paramagnetism

هي خاصية انجذاب المادة نحو المجال المغناطيسي الخارجي نتيجة وجود الكترونات مفردة في أوربيتالاتها

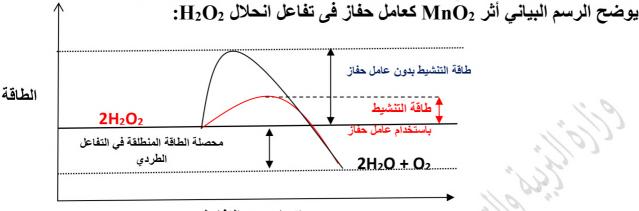
- الله علل: تظهر الخاصية البارامغناطيسية في الأيونات أو الذرات أو الجزيئات التي يكون فيها أوربيتالات تشغلها إلكترونات مفردة؟؟
- صم لأن غزل (دوران) الإلكترون المفرد حول محوره ينشأ عنه مجال مغناطيسي ينجذب مع المجال المغناطيسي الخارجي.
- تتناسب قوى الجذب المغناطيسي في المواد البارامغناطيسية طرديا مع عدد الإلكترونات المفردة.
 - 🗇 معظم مركبات العناصر الانتقالية مواد بارا مغناطيسية.
 - الله على: يمكن تحديد التركيب الإلكتروني للفلز أو أيونه من عزمه المغناطيسى؟؟ هم الأنه من معرفة العزوم المغناطيسية يمكن تحديد عدد الإلكترونات المفردة في مستوي الطاقة الخارجي والتركيب الإلكتروني للفلز أو أيونه.

العزم المغناطيسى: هو خاصية يمكن عن طريق قياسها أو تقديرها للمادة تحديد عدد الالكترونات المفردة ومن ثم تحديد التركيب الإلكتروني لأيون الفلز.

2 -الخاصية الديامغناطيسية: Diamagnetism

هي خاصية تنافر المادة مع المجال المغناطيسي نتيجة لوجود جميع الكتروناتها في حالة ازدواج

أي المواد الآتية ديامغناطيسية وأيها بارامغناطيسية؟ ذرة الخارصين(d¹) كالوريد الحديد (d³))					
الخاصية المغناطيسية	الذرة أو التوزيع الإلكتروني لأوربيتالات d عدد الإلكترونات الايون				
ديامغناطيسية	صفر	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$	Zn		
بارامغناطيسية	1	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow	Cu ²⁺		
بارامغناطيسية	4	$\downarrow\uparrow$ \uparrow \uparrow \uparrow	Fe ²⁺		


Т	رتب الكاتيونات الأتية تصاعديا حسب عزمها المغناطيسي TiO2 ، Cr2O3 ،FeCl3					
الترتيب	عدد الإلكترونات المفردة		تروني لأوربيتالات d	التوزيع الإلكن	الكاتيون	
			100		Fe ³⁺	
		1			Cr³+	
	1, 2	1	3		Ti ⁴⁺	

- - المادة البارا مغناطيسية عندما توضع بين قطبي مغناطيس فإن وزنها الظاهري يزداد
 - ♦ المادة الدايامغناطيسية عندما توضع بين قطبي مغناطيس فإن وزنها الظاهري يقل ﴿

خامساً: النشاط الحفزي: Catalytic activity

- 🗍 علل: الفلزات الانتقالية عوامل حفز مثالية؟؟
- 🗇 علل: عناصر السلسلة الانتقالية الأولى لها نشاط حفزي ؟؟
- 🗖 علل: عنصر المنجنيز يستخدم كعامل حفز مثالى. أو أي عنصر من السلسلة؟
- والمستخدم في طريقة هابر بوش أو طريقة فيشر تروبش؟

مم الاستخدام الإلكترونات المفردة في المستويين الفرعيين 45, 3d في تكوين روابط مع الجزيئات المتفاعلة، مما يؤدى إلى إضعاف الروابط بين ذرات الجزيئات المتفاعلة ويزيد من تركيز المتفاعلات على سطح الحافز وهو ما يقلل من طاقة التنشيط ويزيد من سرعة التفاعل.

اتجاه سير التفاعل

أهمية العامل الحفاز؟

زيادة معدل التفاعل الكيميائي عن طريق تقليل طاقة تنشيط المتفاعلات.

وضح بالمعادلات استخدام العناصر الانتقالية كعوامل حفازة؟؟

✓ الحديد المجزأ في تحضير غاز النشادر بطريقة (هابر – بوش):

$$N_{2(g)} + 3H_{2(g)} \xrightarrow{\text{500 C}^{\circ} / \text{200atm}} 2NH_{3(g)}$$

✓ خامس اكسيد الفائديوم كعامل حفاز في تحضير حمض الكبريتيك بطريقة التلامس:

$$2SO_{2(g)} + O_{2(g)} \xrightarrow{V_2O_5} 2SO_{3(g)}$$

$$SO_{3(g)} + H_2O_{(l)} \longrightarrow H_2SO_{4(aq)}$$
 H_2O_2 كتابي أكسيد الميدروجين أكسيد المنجنيز كعامل حفاز في تفاعل انحلال فوق أكسيد الميدروجين

$$2H_2O_{2(l)} \xrightarrow{MnO_2} 2H_2O_{(l)} + O_{2(g)}$$

✓ النيكل المجزأ: يستخدم في عمليات هدرجة الزيوت

معظم مركبات العناصر الانتقالية ومحاليلها المائية ملونة

سادساً: الأيونات الملونة

تفسير اللون في المواد: عند سقوط الضوء المرئي على المادة فإنها تمتص لون معين وتظهر باللون المتمم (المنعكس) له وهو الذي تراه به العين.

- إذا امتصت المادة جميع ألوان الضوء المرئي (أبيض) تظهر للعين سوداء.
- ♦ إذا عكست المادة جميع الألوان الساقطة عليها ولم تمتص أياً منها تظهر للعين باللون الأبيض.
 - إذا لم تمتص ولم تعكس أي لون تكون شفافة غير ملونة

العلاقة بين ألوان أيونات العناصر الانتقالية وتركيبها الإلكتروني

- اللون في العناصر الانتقالية يرجع إلى الامتلاء الجزئي للمستوى الفرعي (d^{1-9}) أي وجود الكترونات مفردة في أوربيتالات المستوى الفرعى (d).
- (d^{10}) العناصر أو الأيونات التي تتميز باحتوائها على أوربيتالات d فارغة (d^0) أو ممتلئة تماما (d^{10}) غير ملونة
 - الأبيض عندما يتحد اللون مع اللون المتمم له تظهر المادة باللون الأبيض
 - آ اللون المتمم: هو اللون الذي لا تمتصه المادة وتعكسه على العين مسبباً لونها، وهو محصلة الألوان المنعكسة من المادة للعين مسببة لونها.
 - 🗂 علل: مركبات الكروم (١١١) تظهر لونها باللون الأخضر؟؟
- محم لأنها تمتص اللون الأحمر عند سقوط الضوء الأبيض وتظهر باللون المتمم له وهو اللون الأخضر
 - 🗍 علل: أيونات 4-Cu+2 ،Fe ملونة، بينما أيونات 2n+2 غير ملونة؟؟

 $Fe^{2+}:[_{18}Ar],3d^{6}$ $Cu^{2+}:[_{18}Ar],3d^{9}$

لأن المستوى الفرعي (3d) في كلا من 4-Cu2+ ،Fe يكون محتوياً على إلكترونات مفردة،

 $Zn^{2+} :[_{18}Ar],3d^{10}$ $Cu^{+} :[_{18}Ar],3d^{10}$

بينما في كلا من +Zn²، كيون تام الامتلاء.

- 🗇 علل: معظم الفلزات الانتقالية ومركباتها تتجاذب مع المجالات المغناطيسية الخارجية؟؟
- صمر لأن حركة الالكترونات المفردة حول محورها في المستوى الفرعي (d) تنتج مجالات مغناطيسية تتجاذب مع المجال المغناطيسي الخارجي.
 - 🗍 علل: أيونات 2n+2، 3c+3 غير ملونة؟؟

 $Sc^{3+}:[_{18}Ar],4s^{0},3d^{0}$ $Zn^{2+}:[_{18}Ar],3d^{10}$

لأن المستوى الفرعي (3d) يكون فارغاً في حالة +5c3 وتام الامتلاء في حالة +2n2 وبالتالي لا تتواجد الكترونات مفردة في الحالتين.

جميع عناصر المجموعة الثامنة ملونة وبارامغناطيسية

الجدول التالى يوضح ألوان أيونات بعض العناصر الانتقالية في محاليلها المائية (للاطلاع فقط)

الملون	عدد إلكترونات (3d) في الأيون	اللون	عدد إلكترونات (3d) في الأيون
أصفر	$(3d^5) Fe^{3+}_{(aq)}$	عديم اللون	$(3d^0) \ Sc^{3+}_{(aq)}$
أخضر	$(3d^6) Fe^{2+}_{(aq)}$	بنفسجى محمر	$(3d^1) Ti^{3+}_{(aq)}$
أحمر	$(3d^7) Co_{(aq)}^{2+}$	أزرق	$(3d^2) V_{(aq)}^{3+}$
أخضر	$(3d^8) Ni_{(aq)}^{2+}$	أخضر	$(3d^3) Cr_{(aq)}^{3+}$
أزر ق	$(3d^9) Cu_{(aq)}^{2+}$	بنفسجي	$(3d^4) \ Mn^{3+}_{(aq)}$
عديم اللون	$(3d^{10})\ Zn^{2+}_{(aq)}Cu^+_{(aq)}$	أحمر (وردى)	$(3d^5) Mn_{(aq)}^{2+}$

4- استخلاص الحديد

- يحتل الحديد المرتبة الرابعة من حيث الانتشار في القشرة الارضية (بعد الاكسجين والسيليكون والألومنيوم)
- يمثل %5.1 من وزن القشرة الأرضية وتزداد كميته كلما اقتربنا من باطن الأرض
- لا يتواجد بصورة حرة إلا في النيازك (90%)
 يوجد الحديد في القشرة الأرضية على هيئة خامات طبيعية تحتوى على معظم أكاسيد الحديد مختلطة بشوائب

تتوقف صلاحية الخام لاستخلاص الحديد منه على ثلاثة شروط:

- (أ) نسبة الحديد في الخام. (ب) تركيب الشوائب الموجودة في الخام.
 - (ج) نوعية العناصر الضارة المختلطة بالخام (S/P/As).

أهم خامات الحديد في مصر:

أماكن وجوده فى مصر	نسبة الحديد في الخام	الخواص	الاسم الكيميائى	الصيغة الكيميائية	الخام
الواحات البحرية- الجزء الغربي لمدينة أسوان	%60 – 50	لونه أحمر داكن ـسمهل الاختزال	أكسيد الحديد	Fe ₂ O ₃	الهيماتيت (الأكسيد الأحمر)
الواحات البحرية	%60 – 20	أصفر اللون ـ سهل الاختزال	أكسيد الحديد المتهدرت	2Fe ₂ O ₃ .3H ₂ O	الليمونيت (الأكسيد المتهدرت)
الصحراء الشرقية	%70 – 45	أسود اللون - له خواص مغناطيسيه	أكسيد الحديد المغناطيسى	Fe ₃ O ₄	الماجنيتيت (الأكسيد الأسيد)
	% 42 – 30	لونه رمادی مصفر ــ سهل الاختزال	كربونات الحديد	FeCO₃	السيدريت

استخلاص الحديد من خاماته (التعدين):

هى عملية الحصول على الحديد من خاماته في صورة يمكن استخدامه بعدها عمليًا. وتتم هذه العملية على ثلاث مراحل هي:

3- انتاج الحديد	2- اختزال الخام	1- تجهيز الخام
انتاج الصلب بواسطة أحد	أ) الفرن العالى	أ) تحسين الخواص الفيزيائية:
الأفران التالية:	باستخدام CO الناتج من فحم الكوك	1- التكسير
1- المحول الأكسجيني	ب) فرن مدرکس	2- التلبيد
2- الفرن المفتوح	باستخدام خليط من CO, H2 الناتج	3- التركيز
3- الفرن الكهربي	من الغاز الطبيعي	ب) تحسين الخواص الكيميائية:
		4- التحميص

الهدف من تجهيز الخام:

أولا: تجهيز الخام

1-تحسين الخواص الفيزيائية والميكانيكية للخام (عن طريق عمليات: التكسير – التلبيد – التركيز) 2 - تحسين الخواص الكيميائية للخام (عن طريق عملية التحميص)

1- تحسين الخواص الفيزيائية والميكانيكية

- 1- عملية التكسير: بهدف الحصول على الحجم المناسب (قطع أصغر) لعملية الاختزال
- 2- عملية التلبيد: هي تجميع حبيبات الخام الناعم في أحجام أكبر تكون متماثلة ومتجانسة س: ما هو مصدر الحبيبات الناعمة؟

عملية التكسير والطحن وعملية تنظيف غازات الأفران العالية بعد الاختزال.

3- عملية التركيز: عملية تجرى بهدف زيادة نسبة الحديد في الخام وذلك بفصل الشوائب والمواد الغير مرغوب فيها المختلطة بالخام أو المتحدة معه كيميائيا وتتم عن طريق: (أ) الفصل المغناطيسي أو الكهربي.

(ب) خاصية التوتر السطحي.

2- تحسين الخواص الكيميائية

التحميص تسخين الخام بشدة في الهواء وذلك لسببين:

1)- تجفيف الخام والتخلص من الرطوبه ورفع نسبة الحديد في الخام

الصف الثالث الثاثوي 34

(2) أكسدة بعض الشوائب مثل الكبريت والفوسفور

$$S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}$$

 $4P_{(s)} + 5O_{2(g)} \longrightarrow 2P_2O_{5(g)}$

ثانيا: إختزال خامات الحديد

عملية تحويل أكاسيد الحديد الى حديد باستخدام مادة مختزلة. ويتم ذلك بإحدى طريقتين حسب نوع العامل المختزل إما في الفرن العالى أو في فرن مدركس:

(ب) فرن مدرکس	(أ) الفرن العالى ((اللافح))	وجه المقارنة
الغاز المائى	أول اكسيد الكربون CO	العامل المختزل
(خليط من غازى CO + H ₂)		
الغاز الطبيعي	فحم الكوك	مصدر العامل
لاحظ: (نسبة غاز الميثان CH4 في		المختزل
الغاز الطبيعي 93%)		
$2CH_{4(g)} + CO_{2(g)} + H_2O_{(v)}$	$C_{(S)} + O_{2(g)} \longrightarrow CO_{2(g)}$	معادلة الحصول
→ 3CO _(g) + 5H _{2(g)}		على العامل
	$CO_{2(g)} + C_{(s)} \xrightarrow{\triangle} 2CO_{(g)}$	المختزل
$2F_2O_{3(S)} + 3CO_{(g)} + 3H_{2(g)}$	F ₂ O _{3(S)} +3CO _(g) Above 700	معادلة الاختزال
Above 700 4Fe(s) +3CO _{2(g)}	2Fe _(S) +3CO _{2(g)}	الحصول على
+3H ₂ O _(v)	- (0)	الحديد

أكمل الجدول موضحا العامل المؤكسد والعامل المختزل في الفرن العالى:

العامل المختزل	العامل المؤكسد	الخطوات
an .		الأولى
100		الثانية
		الثالثة

بعد عملية إختزال الخام في الفرن العالى أو في فرن مدركس تأتى المرحلة الأخيرة وهي إنتاج الحديد مثل الحديد الصلب أو الحديد الزهر

ثالثاً : انتاج الحديد

تعتمد صناعة الصلب على عمليتين أساسيتين:

- 1) التخلص من الشوائب المتبقية في الحديد الناتج من أفران الاختزال
- 2) إضافة عناصر أخرى الى الحديد لإكساب الصلب الناتج الخواص المطلوبة للأغراض الصناعية

تتم صناعة الصلب باستخدام أحد الأفران الآتية هي: المحولات الاكسجينية - الفرن المفتوح - الفرن الكهربائي

تدريب

أكمل الجدول التالى بوضع كلمة (تقل / تزداد / تظل ثابتة)

	•		<u> </u>	
التحميص	التركيز (التوتر السطحى)	التلبيد	التكسير	
				كتلة الخام الكلية
				كتلة الشوائب في الخام
				نسبة الحديد في الخام
			11/6%	نسبة الشوائب في الخام
		113-1	2)	نوع العملية
		7/0		(فیزیائیة أو کیمیائیة)

- عند تحميص السيدريت تتغير كثافته ولونه
- عند تحميص السيدريت تتغير نسبة الحديد ويتغير عدد تأكسد الحديد وعدد الإلكترونات المفردة.
- عند تحميص الليمونيت تتغير نسبة الحديد وتتغير كتلة الخام بمقدار ماء التبلر ويتحول الخام من اللون الأصفر إلى اللون الأحمر. لا يتغير عدد تأكسد الحديد ويظل ثابت عند (+3).

تدریب ذاتی

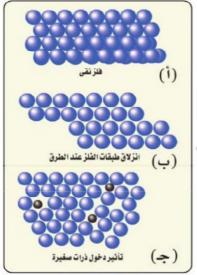
- 1- عدد مولات السدريت اللازمة لإنتاج mol من الحديد في الفرن العالى = ______
- 2- عدد مولات الليمونيت اللازمة لإنتاج 0.5 mol من الحديد في فرن مدركس =
 - 3- رتب الخطوات التالية للتعبير عن تسلسل العمليات اللازمة لإنتاج الحديد:
 - (التوتر السطحى التلبيد إضافة بعض العناصر التحميص الاختزال)
 - 4- ماذا يحدث عند تحويل الهيماتيت الى حديد صلب؟
 - (أ) اختزال فقط (ب) اكسدة ثم اختزال (ج) اختزال ثم اكسدة (د) اكسدة فقط
 - 5- وضح برسم بياني العلاقة بين الكتلة والزمن عند: تحميص عينه من الليمونيت
 - 6- وضح برسم بيانى العلاقة بين الكتلة والزمن عند: تحميص عينة من السيدريت
- 7- من السيدريت كيف تحصل على هيماتيت (من كربونات الحديد | كيف تحصل على أكسيد الحديد |||)
- 8- من الليمونيت كيف تحصل على هيماتيت (من أكسيد حديد متهدرت كيف تحصل على أكسيد حديد [[])
 - 9- ما ناتج تحميص السيدريت؟
 - 10- ما ناتج تسخين السيدريت بمعزل عن الهواء؟

5- السبائك

مواد تتكون من فلزين أو أكثر مثل الحديد والكروم ويمكن أن تتكون من فلز وعناصر الفلزية مثل الكربون

تحضير السبائك

- 1) طريقة الصهر: صهر الفلزات مع بعضها بنسب معينه ثم تُوضع في قوالب ويترك المصهور ليبرد تدريجيا.
- 2) طريقة الترسيب الكهربي: طريقة للحصول على سبائك لفلزين او أكثر في نفس الوقت وذلك بترسيبه كهربيا من محلول يحتوى ايونات الفلزات المترسبة. مثال: تغطية المقابض الحديدية بالنحاس الأصفر (نحاس + خارصين)


إكساب بعض الفلزات صفات وخواص يتميز بها عن الفلز النقى مثل مقاومة الصدأ والتآكل والصلابة والمتانة

أنواع السبائك

1- سىيكة

سبانك تحتل فيها ذرات الفلز المضاف المسافات البينية في الشبكة البللورية لفلز آخر. تفسير تكوين السبيكة البينية:

- 1- أى فلز نقى كالحديد يتكون من شبكة بللورية من ذرات الفلز مرصوصة رصا محكما بينها مسافات بينية
- 2- عند الطرق يمكن ان تتحرك طبقة من ذرات الفلز فوق طبقة أخرى
 - 3- إذا أدخل فلز أخر حجم ذراته أقل من حجم ذرات الفلز النقى في المسافات البينية للشبكة البللورية للفلز الأصلى فان ذلك يعوق إنزلاق الطبقات وهو ما يزيد من صلابة الفلز
- 4- تتغير بعض خواصه الفيزيائية مثل قابليته للسحب والطرق ودرجة الانصهار والتوصيل الكهربي والخواص المغناطيسية مثـان: سبيكة الحديد - كربون (الحديد الصلب أو الصلب الكربوني)

2- لسبيكة

سبائك تستبدل فيها بعض ذرات الفلز الأصلى بذرات فلز أخر له نفس

القطر والشكل البللوري والخواص الكيميائية. ومن أمثلتها:

سبيكة الحديد والكروم (الصلب الذي لا يصدأ) - سبيكة الحديد والنيكل - سبيكة الذهب النحاس

3-سبيكة المركبات تتكون نتيجة اتحاد ذرات العناصر المكونة للسبيكة اتحادًا كيميائيا فتتكون مركبات كيميائية لا تخضع صيغتها الكيميائية لقوانين التكافؤ المعروفة.

الصف الثالث الثاثوي 39

خواص سبائك المركبات البينفلزية:

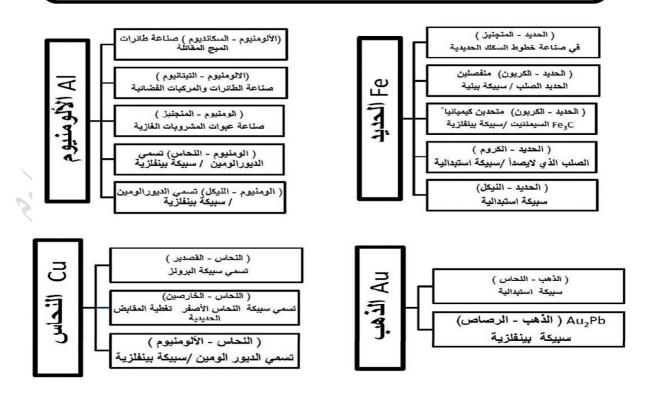
- 1) مركبات صلبة
- 2) تتكون من فلزات لاتقع في مجموعه واحده من الجدول الدوري
 - 3) لا تخضع صيغتها الكيميائيه لقوانين التكافق

امثلة: سبيكة الديورالومين: سبيكتى (الألومنيوم - النيكل) و (الألومنيوم - نحاس) سبيكة الرصاص والذهب (Au₂Pb) - السيمنتيت Fe₃C ((كربيد الحديد))

س-سبيكة الحديد والكروم من السبائك الاستبدالية. علل؟؟

لان ذرات الحديد والكروم لها نفس نصف القطر والشكل البللورى والخواص الكيميائية سرب سبيكة السيمنتيت من السبائك البينفلزية؟؟

لأنها تتكون نتيجة اتحاد كيميائى بين الحديد والكربون ولا تخضع عناصرها لقوانين التكافؤ كما ان العناصر المكونة لها لا تقع في مجموعة واحدة.


تدرب

- 1- اذكر اسم ونوع السبيكة التي تتكون من عنصرين النسبة بين مكوناتها 3:1
- 2- اذكر إسم ونوع السبيكة التي تتكون من عنصرين النسبة بين حجومها 1:1
 - 3- أى ازواج العناصر التالية لا يكونا معا سبيكة؟

Au, Cu ($^{\downarrow}$) Fe, C($^{\downarrow}$) Fe, Hg($^{\downarrow}$) Zn, Cu(†)

4- ما هو العنصر المشترك بين مقابض الأبواب الصفراء ودلو ماء مجلفن؟

مخطط سبائك بعض العناصر الإنتقالية

6- خواص الحديد وتفاعلاته

1- الخواص الفيزيائية

1- الحديد النقى ليس له أهمية صناعية فهو لين نسبيا وليس شديد الصلابة – يسهل تشكيله – قابل للسحب والطرق - له خواص مغناطيسية

2- ينصهر عند £ 1538 وكثافته 7.87 g/Cm

3-تعتمد الخواص الفيزيائية على نقاوته وطبيعة الشوائب به لذا يفضل استخدام الحديد في صورة سبائك وليس في صورة نقية.

2- الخواص الكيميائية

تتعدد حالات تأكسد الحديد وأهمها:

- ♦ (+2) وتدل على خروج إلكتروني المستوى الفرعي 45
- ♦ (+3) وتدل على خروج إلكترونى المستوى الفرعى 45 والكترون واحد من 3d وهى تمثل الحالة الأكثر ثباتا وذلك للامتلاء النصفى للمستوى الفرعى 3d
 - (b) يختلف الحديد عن العناصر التي تسبقه في السلسلة الانتقالية الأولى علل؟

لا يعطى الحديد حالة تأكسد (+8) والتي تدل على خروج جميع الكترونات 4s, 3d بعكس باقى العناصر التي تسبقه في السلسلة.

أولًا: تأثير الهواء

يتفاعل الحديد الساخن لدرجة الاحمرار مع الهواء أو الأكسجين لينتج أكسيد حديد مغناطيسى 3Fe(s) + 2O_{2(g)} - Fe₃O_{4(s)}

ثانيًا: تأثير بخار الماء

يتفاعل الحديد الساخن لدرجة الاحمرار (C°500) مع بخار الماء ويعطى أكسيد حديد مغناطيسي ويتصاعد الهيدروجين

 $3Fe(s) + 4H_2O(v)$ Fe₃O_{4(s)} + $4H_{2(g)}$

ثالثًا: التفاعل مع اللافلزات

يتفاعل الحديد مع الكلور مكونا كلوريد حديد (!!!) ومع الكبريت مكونا كبريتيد الحديد (!!)

 $Fe_{(s)} + S_{(s)} \longrightarrow FeS_{(s)}$

 $2Fe_{(s)} + 3CI_{2(g)} \longrightarrow 2FeCI_{3(s)}$

يتكون كلوريد الحديد ||| ولا يتكون كلوريد حديد || علل؟

لان الكلور عامل مؤكسد قوى يحول الحديد الثنائي إلى حديد ثلاثي.

رابعًا: مع الأحماض

يذوب الحديد في الأحماض المعدنية المخففة ليعطى أملاح الحديد (١١) وهيدروجين ولا يعطى أملاح الحديد (|||) علل! لأن الهيدروجين الناتج يختزلها الى أملاح حديد ||

1- مع حمض الهيدروكلوريك المخفف

يعطى كلوريد حديد (۱۱) وهيدروجين

$$Fe(s) + 2HCI_{(aq)} \xrightarrow{dil} FeCI_{2(aq)} + H_{2(g)}$$

2-مع حمض الكبريتيك المخفف

$$Fe(s) + H_2SO_{4(aq)} \xrightarrow{dil} FeSO_{4(aq)} + H_{2(g)}$$

3- مع حمض الكبريتيك المركز

لا يؤثر الحمض إلا بعد التسخين ويتكون كبريتات حديد (١١) وكبريتات حديد (١١١) وثاني أكسيد كبريت وماء

لا يتفاعل الحديد وذلك بسبب ظاهرة الخمول الكيميائي للحديد علل؟

نتيجة تكون طبقة رقيقة من الأكسيد على سطحه تمنع استمرار التفاعل. ويمكن إزالة هذه الطبقة بالحك أو إذابتها في حمض هيدروكلوريك مخفف.

ملاحظات:

في حالة وجود عامل مؤكسد مع أملاح الحديد | يتكون ملح الحديد |||

تدریب ذاتی

1- يتفاعل الحديد مع الكبريت ويكون مركب (X) وأحيانا يكون مركب (Y) في ظروف أخرى . ایا مما یأتی یعبر عن X, Y?

$$X = FeS$$
, $Y = Fe2S3 (\rightarrow)$

$$X = FeS, Y = FeS_2$$
 (1)

$$X = Fe_2S_3$$
, $Y = FeS_2$ (4)

$$X = FeS_2, Y = Fe_2S_3$$
 (ح)

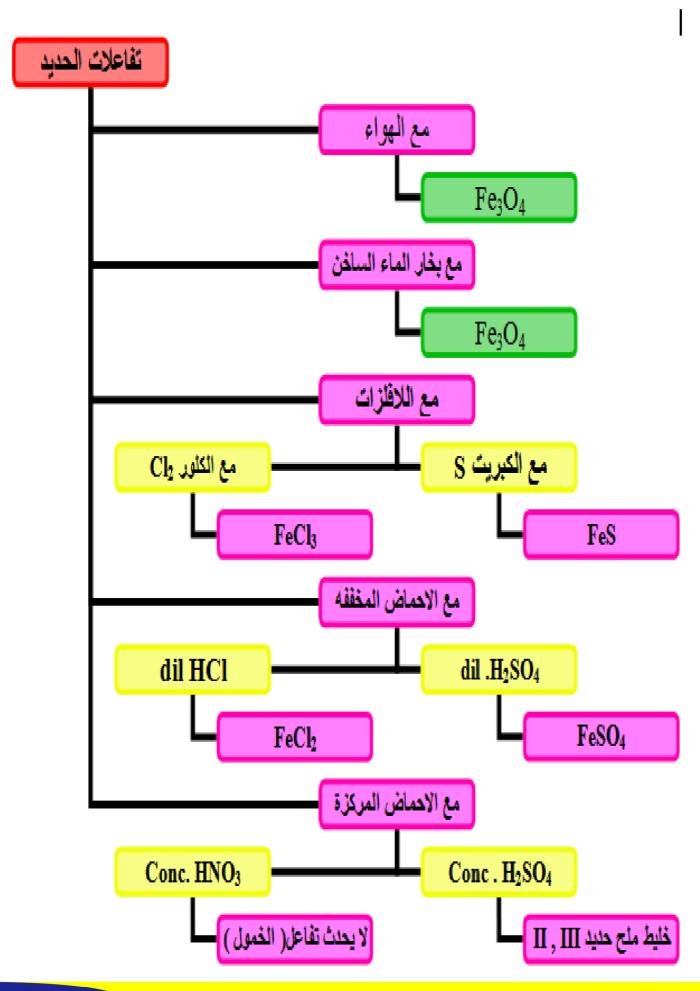
2- أي التفاعلات التالية تتم في درجة حرارة الغرفة؟

(أ) الحديد مع بخار الماء. (ب) الحديد مع بخار الماء والاكسجين (عملية الصدأ).

(د) الحديد مع حمض الكبريتيك المركز. (ج) الحديد مع الكلور.

3- غُمرت قطعة من الحديد في حمض (X) لمدة يومين ثم تم نقلها إلى إناء به حمض HCI مخفف لُوحظ عدم حدوث تفاعل. ما الحمض (X) وماذا تتوقع ان يحدث بعد فترة.

4- لديك سبيكة من الحديد والنحاس كيف تحصل منها على الحديد؟


5- لديك سبيكة من الحديد والنحاس كيف تحصل منها على النحاس؟

6- لديك سبيكتان للحديد مع الخارصين والنحاس مع الخارصين كيف تميز بينهما بطريقتين؟

4- كيف تميز بين سبيكة الحديد الصلب والسيمنتيت؟

7- قارن بين سبيكة الحديد الصلب والسيمنتيت؟

44 الصف الثالث الثاثوي

7- أكاسيد الحسديد

1- أكسيد الحديد FeO II

تحضيره:

2- اختزال الأكاسيد الأعلى (بالهيدروجين أو أول أكسيد الكربون في درجة 700°C - 400):

Fe₂O_{3(s)} + H_{2(g)}
$$\xrightarrow{400-700^{\circ}\text{C}}$$
 2FeO_(s) + H₂O_(v)
Fe₃O_{4(s)} + H_{2(g)} $\xrightarrow{400-700^{\circ}\text{C}}$ 3FeO_(s) + H₂O_(v)

خواصــــه: 1- مسحوق أسود لا يذوب في الماء

2- يتأكسد بسهولة في الهواء الساخن

Fe₂O₃ III عبيد الحديد -2

تحضيره:

1- بإضافة محلول قلوى لأحد أملاح الحديد (III) فيترسب هيدروكسيد حديد (III) (بنى محمر) الذى يتحول بالتسخين (أعلى من °200) الى أكسيد الحديد (III)

$$FeCI3(aq) +3NH4OH(aq) \longrightarrow Fe(OH)3(s) + 3NH4CI(aq)$$

2- عند تسخين كبريتات الحديد (۱۱) ينتج أكسيد الحديد (۱۱۱)

$$2FeSO_{4(s)}$$
 \longrightarrow $Fe_2O_{3(s)} + SO_{2(g)} + SO_{3(g)}$

وجوده: يوجد في الطبيعة في خام الهيماتيت

خواصه: 1- لا يذوب في الماء

2- يستخدم كلون أحمر في الدهانات

3- يتفاعل مع الأحماض المعدنية المركزة الساخنة معطيا أملاح الحديد (١١١) والماء

$$Fe_2O_{3(s)} + 3H_2SO_{4(aq)} \xrightarrow{Conc} Fe_2(SO_4)_{3(aq)} + 3H_2O_{(l)}$$

س: من الحديد كيف تحصل على اكسيد الحديد !!! بخمس طرق مختلفة؟

س: من هيدروكسيد حديد | كيف تحصل على هيدروكسيد حديد | والعكس؟

3- أكسيد الحديد المغناطيسي Fe₃O₄

تحضيره:

1 ـ من الحديد المسخن لدرجة الاحمرار بفعل الهواء أو بخار الماء

2 – باختزال أكسيد الحديد (ا||)

$$3Fe_2O_{3(s)} + CO_{(g)} \xrightarrow{230-300} 2Fe_3O_{4(s)} + CO_{2(g)}$$

وجوده: يوجد في الطبيعة ويُعْرَف بالماجنيتيت وهو خليط من أكاسيد الحديد (١١) و(١١١) خواصه:

- 1- مغناطيس قوى
- 2- يتفاعل مع الاحماض المركزة الساخنة معطيا أملاح حديد (||) وأملاح حديد (||) مما يدل على أنه أكسيد مركب

$$2Fe_3O_{4(s)} + \frac{1}{2}O_{2(g)} \longrightarrow Fe_2O_{3(s)}$$

علل

1- عند تسخين كبريتات الحديد || يتكون أكسيد حديد ||| وليس أكسيد حديد ||؟

لأن SO₃ عامل مؤكسد (جزء منه يبقى كما هو (SO₃) وجزء منه يحدث له اختزال إلى SO₂) ويؤكسد أكسيد الحديد || إلى أكسيد حديد ||| من خلال تفاعل أكسدة اختزال ذاتي.

2- تسخين أوكسالات الحديد || بمعزل عن الهواء يعطى أكسيد حديد || وليس أكسيد حديد ||!؟ لوجود CO في وسط التفاعل وهو عامل مختزل يحول أكسيد الحديد ||| إلى أكسيد حديد ||. كما ان التسخين يتم بمعزل عن الهواء فلا وجود للأكسجين الذي يقوم بدور العامل المؤكسد.

ملحوظة هامة: الجدول التالى للمقارنة بين الحديد وأكاسيده						
Fe ₃ O ₄	Fe ₂ O ₃	FeO	Fe			
لا يتفاعل	لا يتفاعل	يتفاعل	يتفاعل	H ₂ SO ₄ مخفف		
يتفاعل	يتفاعل	يتفاعل	يتفاعل	H ₂ SO ₄ مركز		
يقبل الأكسدة ويحمر	لا يقبل الأكسدة	يقبل الأكسدة ويحمر	يقبل الأكسدة ويسود	الأكسدة		

تدريبات

- 1- كيف تميز بين حمض كبريتيك مخفف حمض كبريتيك مركز حمض نيتريك مركز
 - 2- كيف تميز بين أكسيد حديد || وأكسيد حديد |||
 - 3- من خلال تفاعل انحلال حرارى كيف تحصل على ثلاث أكاسيد؟ (بطريقتين)
- 4- كيف يمكنك الحصول على 50₂, 50₃ في معادلة واحدة ومرة أخرى كل منهما في معادلة على حدى؟
- 5- المركب النهائي الناتج من تفاعل الحديد مع الكلور ثم اضافة محلول قلوى للناتج والتسخين؟
 - 6- وضح بمعادلة كيميائية موزونة تفاعل الماجنيتيت مع حمض HCl مركز؟
 - 7- وضح برسم بيانى التغير الحادث في كتلة هيدروكسيد الحديد !!! والزمن عند التسخين
 - 8- وضح برسم بيانى العلاقة بين كتلة قطعة من الحديد اثناء تسخينها والزمن
- 9- وضح برسم بيانى العلاقة بين كتلة أوكسالات الحديد || والزمن عند تسخينها مرة بمعزل عن الهواء ومرة أخرى اثناء تسخينها في الهواء.
 - 11- اوجد عدد مولات الحديد والأكسجين اللازمة لإنتاج mol 2 من كبريتات الحديد !!!
 - 12- يمكن تحضير خليط من كلوريد الحديد !!! , !! بالطرق العادية ماعدا:
 - (أ) إمرار بخار ماء على حديد مسخن لدرجة الاحمرار ثم إضافة حمض HCl مركز
 - (ب) إمرار غاز الكلور على الحديد المسخن لدرجة الاحمرار
- (ج) تسخين FeSO4 ومعالجة المادة الصلبة بواسطة CO عند 270°C ثم إضافة HCl مركز
 - (د) تسخین خلیط من هیدروکسید حدید II, III مع حمض HCl مرکز